Newly Designed Ternary Metallic PtPdBi Hollow Catalyst with High Performance for Methanol and Ethanol Oxidation

نویسندگان

  • Zhiping Xiong
  • Shumin Li
  • Hui Xu
  • Ke Zhang
  • Bo Yan
  • Luísa Margarida Martins
چکیده

This paper reported the fabrication of ternary metallic PtPdBi hollow nanocatalyst through a facile, one-pot, wet-chemical method by adopting sodium borohydride and polyvinylpyrrolidone as reducing agent and surfactant directing agent, respectively. The hollow structure offers novel morphology and large surface areas, which are conducive to enhancing the electrocatalytic activity. The electrocatalytic properties of hollow PtPdBi nanocatalyst were investigated systematically in alkaline media through cyclic voltammetry and the as-prepared PtPdBi nanocatalyst displays greatly enhanced electrocatalytic activities towards methanol and ethanol oxidation. The calculated mass activities of PtPdBi electrocatalyst are 2.133 A mgPtPd for methanol oxidation reaction and 5.256 A mgPtPd for ethanol oxidation reaction, which are much better than that of commercial Pt/C and commercial Pd/C. The as-prepared hollow nanocatalyst may be a potential promising electrocatalyst in fuel cells and also may be extended to the applications of other desirable functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells

Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activit...

متن کامل

Effects of the Solvent and Calcination Temperature on LaFeO3 Catalysts for Methanol Oxidation

In this work, two types of solvents ethanol or water were used in preparation of the LaFeO3 catalysts by citrate sol gel method. The obtained samples were subjected to various calcination temperatures in order to study the catalytic activity and stability for methanol electro-oxidation by XRD, cyclic voltammetry and chronoamperometry. The crystallinity of the LaFeO3 ph...

متن کامل

Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation.

Newly-designed ternary Pt/PdCu nanoboxes on three-dimensional graphene framework (Pt/PdCu/3DGF) have been fabricated via a dual solvothermal strategy. This structurally well-defined Pt/PdCu/3DGF system possesses an approximately 4-fold improvement in catalytic activity for ethanol oxidation in alkaline media over the commercial 20% Pt/C catalyst as normalized by the total mass of active metals,...

متن کامل

Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol

Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017